Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics.
نویسندگان
چکیده
We consider a random network of nonlinear maps exhibiting a wide range of local dynamics, with the links having normally distributed interaction strengths. The stability of such a system is examined in terms of the asymptotic fraction of nodes that persist in a nonzero state. Scaling results show that the probability of survival in the steady state agrees remarkably well with the May-Wigner stability criterion derived from linear stability arguments. This suggests universality of the complexity-stability relation for random networks with respect to arbitrary global dynamics of the system.
منابع مشابه
Universality of Local Spectral Statistics of Random Matrices
The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large random matrices exhibit universal behavior depending only on the symmetry class of the matrix ensemble. For invariant matrix models, the eigenvalue distributions are given by a log-gas with potential V and inverse temperature β = 1, 2, 4, corresponding to the orthogonal, unitary and symplectic ensembl...
متن کاملControl of a Chemical Reactor with Chaotic Dynamics
In this paper, control of a non-isothermal continuous stirred tank reactor in which two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic behavior for a certain set of reactor parameters. In order to control the product concentration, an optimal state feedback controller has been designed. Since concentrations of reactor species are ...
متن کاملUniversality of Wigner Random Matrices
We consider N×N symmetric or hermitian random matrices with independent, identically distributed entries where the probability distribution for each matrix element is given by a measure ν with a subexponential decay. We prove that the local eigenvalue statistics in the bulk of the spectrum for these matrices coincide with those of the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ...
متن کاملUniversality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices
Abstract. Consider an N × N hermitian random matrix with independent entries, not necessarily Gaussian, a so called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N → ∞, the same as that of hermitian random matrices from GUE. We prove this con...
متن کاملLocal stability criterion for self-gravitating disks in modified gravity
We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 71 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2005